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Introduction to Partial Identification

Econometricians typically work with point-identified models, e.g.
Yi = X ′

i β + Ui E (Ui |Xi ) = 0, elements of Xi not perfectly
correlated
there exists only one β that satisfies these assumptions and is
compatible with the distribution of (Yi ,Xi ) which is revealed by
the data.

In certain situations our assumptions are not strong enough to
determine a unique value of a parameter but there is a set of
observationally equivalent models.
Meaning that no amount of data would ever help me to distinguish
between these models.

surveys Manski(1995,2003), Tamer(2010)



Throughout this presentation I will discuss Identification not
Inference.
It is assumed that we know the true data generating process of
observable variables.



An Example

Example 1 - Manski (1990) - Missing data
We are interested in θ = E (Y ), it is only observed when D = 1.
θ = E (Y ) = E (Y |D = 1)P(D = 1) + E (Y |D = 0)P(D = 0)
θ = p.µ1 + (1− p).µ0

Additionial assumptions needed, if e.g. Yi ∈ {0, 1} then

θ ∈ [θlow , θhigh] = [p.µ1, p.µ1 + (1− p)].



Motivation - Exogeneity assumption relaxed

• To see the strength of the assumption that cannot be tested

• Sensitivity analysis
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Galichon and Henry Framework (simplified)

Galichon and Henry (2006, 2009, 2010, 2011)

Two types of variables:
Y - Observable variables (Y ∈ Y with density p)
U - Unobservable variables (U ∈ U with density νθ)

Economic restrictions take the form of
Gθ - many-to-many mapping (Gθ : U 7→ Y )

θ - parameter of interest



Galichon and Henry Framework (simplified) (2)

Not all pairs (Y ,U) are compatible with economic restrictions

 

Y 

U 

G(.) 

 

Y1 

Y2 

U1 

(Y1,U1) is compatible (Y1 ∈ Gθ(U1))
(Y2,U1) is not (Y2 /∈ Gθ(U1))



Galichon and Henry Framework (simplified) (3)

• Parameter θ is included in the Identified set if and only if
there exists a joint distribution π of (Y ,U) on Y × U with
marginals p and νθ such that π({Y ∈ Gθ(U)}) = 1

• It means that the model is compatible with data at hand and
satisfies economic restrictions almost surely



My Extension of GH Framework

Economics enters the model via Gθ only.

I extend the GH framework to entertain additional distributional
restrictions.

E (φ(Y ,U)) = 0

|cov(Y ,U)| ≤ 0.1

U is independent of a component of Y
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My Extension of GH Framework (2)

What can be done using this extension ?

I replicate a few results from partial identification literature that
were obtained by distinct approaches.

In addition: I show how to see the strength of the assumption of a
strict exogeneity of instruments in a nonlinear model with discrete
variables.



Single Equation Endogenous Binary Response Model

Model studied in Chesher (2010, ECTA).

• (Y ,X ,Z ) - Observable variables (pijk)

• U - Unobservable variables (Unif (0, 1))

The economic restrictions are

(Y ,X ,Z ) ∈ Gθ(U) ⇔ Y =

{
0, if U ≤ Φ(−θ0 − θ1X ),

1, if U > Φ(−θ0 − θ1X ).

Further assumption
U⊥Z

What can we tell about (θ0, θ1) ?



Formulation in the extended GH framework

Support restrictions and Discretization
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t(X ) = Φ(−θ0 − θ1X )



Formulation in extended GH framework (2)

πijkl = Pr(Y = yi ,X = xj ,Z = zk ,U = ul)

Penalty is given by

cijkl =

{
0, (yi , xj , zk) ∈ Gθ(ul),
1, otherwise.

Problem is formulated as

min(π)

∑
i ,j ,k,l πijklcijkl

s.t.∑
l πijkl = pijk , ∀i , j , k∑
i ,j ,k πijkl = νl , ∀l∑

i ,j πijkl =
∑

i ,j pijkνl , ∀k, l
πijkl ≥ 0, ∀i , j , k , l .



Comparison of Results (Identified set)
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Exogeneity assumption relaxed (2)

Recall exogenous case

min(π)

∑
i ,j ,k,l πijklcijkl (1)

s.t.∑
l πijkl = pijk , ∀i , j , k∑
i ,j ,k πijkl = νl , ∀l∑

i ,j πijkl =
∑

i ,j pijkνl , ∀k , l
πijkl ≥ 0, ∀i , j , k , l .

Pr(Z = zk ,U = ul) = Pr(Z = zk)Pr(U = ul) ∀k , l



Exogeneity assumption relaxed (3)

Recall exogenous case

min(π)

∑
i ,j ,k,l πijklcijkl (2)

s.t.∑
l πijkl = pijk , ∀i , j , k∑
i ,j ,k πijkl = νl , ∀l∑

i ,j πijkl =
∑

i ,j pijkνl , ∀k , l
πijkl ≥ 0, ∀i , j , k , l .

Pr(Z ,U) = Pr(Z )Pr(U)



Exogeneity assumption relaxed (4)

Now the Z and U are only ”close” to being independent.

min(π)

∑
i ,j ,k,l πijklcijkl (3)

s.t.∑
l πijkl = pijk , ∀i , j , k∑
i ,j ,k πijkl = νl , ∀l∑

i ,j πijkl −
∑

i ,j pijkνl ≤ δ
∑

i ,j pijkνl , ∀k , l
−
∑

i ,j πijkl +
∑

i ,j pijkνl ≤ δ
∑

i ,j pijkνl , ∀k , l
πijkl ≥ 0, ∀i , j , k , l .

|Pr(Z ,U)− Pr(Z )Pr(U)| ≤ δPr(Z )Pr(U)

Still a linear program - computationally feasible.



Exogeneity assumption relaxed (5)



Conclusions

• Extension of an existing framework for incompletely specified
models with discrete variables

• Can replicate some existing results from partial identification
literature in a straightforward manner

• It is possible to see the identification ”strength” of the
exogeneity of instruments in non-linear models with discrete
variables



Thank you for your attention!


