
Inference for Partially Identified Models
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Many interesting models are only partially identified, hence more
than one model is supported by the data.



Example: bounds on average treatment effects (Manski).

Under some reasonable non-parametric assumptions, the college
increase of a mother increases the probability that child gets
college degree by 0 − 36.5%.



My previous work point out that in a rich class of problems that
are partially identified, finding the tightest identified region is
equivalent to solving a particular linear program.

The key is the search in the space of probability distribution
functions.
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Example of the Linear Program



The Major Challenge

How to do statistical inference.

How to take into account the fact that we only have data sample
of fixed length.



What can be done

We wish to learn about [Lmin, Lmax ]

• Confidence set for the true parameter
infθ∈[Lmin,Lmax ] lim infn→∞ Pr(θ ⊆ Cn(1 − α)) ≥ 1 − α

• Confidence set for the whole identified set
lim infn→∞ Pr([Lmin, Lmax ] ⊆ Cn(1 − α)) ≥ 1 − α

• Bayes maximum posterior credible interval



Setup

[Lmin, Lmax ] is the range of possible values of
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Original Form
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Different Methods

This paper: compare the performance of different inferential
methods and give some practical advice.

maxπ c̄
T π̄

s.t

Āπ̄ = m̄

π̄ ≥ 0

• Bootstrap (canonical, bias corrected,
accelerated, percentile)

• Subsampling (Romano and Shaikh 2012)

• Modified Bootstrap (Freyberger and Horowitz
2012)

• Intersection bounds (Chernozhukov, Lee and
Rosen 2012)

• Robust Bayes (Kitagawa 2011)

• Projection (Laffers 2015?)



My contribution

Given some recent advances in the development of inferential
schemes, what inferential scheme should we use if we study
bounds?

In other words: Can we do better than the regular bootstrap?



Bootstrap

(introduced by Efron 1979)

Pros:

• very easy to implement

Cons:

• in some cases theoretically not justified

• e.g. when parameter is on the boundary of the identified set



Subsampling

(Romano and Shaikh 2012)

Pros:

• works under minimal assumptions

Cons:

• less accurate than bootstrap (when it is consistent)

• very ”data hungry”

• too many tuning parameters involve
• subsample size
• scaling sequence
• number of subsamples



Modified bootstrap

(Freyberger and Horowitz 2012)

Pros:

• designed for random linear program

• theoretically justified

Cons:

• relatively easy to implement



Intersection Bounds

(Chernozhukov, Lee and Rosen 2012)

The identification region is defined as[
supv∈V θ

l(v), infv∈V θ
u(v)

]
Pros:

• everything is data driven, no tuning parameters

Cons:

• how to transform my LP into this setup(?)

• implementation



Robust Bayes

(Kitagawa 2011)

Pros:

• coherent decision-theoretic framework

Cons:

• priors

• complex method to explain and sell further

• implementation

• does not address non-differentiability



Projection (Illustration)
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A bit more on the Modified Bootstrap

 
Unique solution Multiple solutions 



To check for empirical coverage, I have to sample from the ”true”
model.



Thank you for your attention. Any comments are very welcome.

http://sites.google.com/site/lukaslaffers

lukas.laffers@nhh.no


